
The idea: to combine different shell model bases:
• m-scheme spherical shell-model
• SU(3) symmetry based shell-model
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perturbative regime

What about more than one
exactly solvable part beyond
the perturbative regime?

Problems that we understand well

H H V= +0

exactly solvable (symmetry at play)

H H H= + +1 2( ) ( ) ...α β

H H= 0

Transition from phase one
to phase two should occur.

Can two or more different sets of basis states be used
to gain a deeper understanding of the basic physics?



The Challenge in Nuclei...

Nuclei display unique characteristics:

• Single-particle Features
• Pairing Correlations
• Deformation/Rotations

Rotations

Closed
Shell

Closed
Shell

Pairing Vibrations



Outline of the Talk
 Introduction…
 General motivation…

 (exactly solvable ⇔⇔⇔⇔ symmetry,  small perturbation, …)

 Two-mode toy model: the harmonic oscillator in a box

 Real nuclei:
    interplay b/w single-particle & collective excitations

 Conclusions



Harmonic Oscillations for
System Near Equilibrium
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A quantized 1D oscillator is
an exactly solvable system
with equally spaced levels:
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Particle in 1D Box
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A quantized 1D box is an
exactly solvable system
with discrete energy levels
with increasing spacing:
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from a 3D bag
to

a 1D box

Finite Volume
Confinement



Two-Mode Toy System
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Particle in
1D Box
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Particle in a 1D
HO (E < Ec) + Box (E > Ec)

Potential

Spectrum
of particle
in 1D Box

(perturbed)

Spectrum
of particle
in 1D HO
potential
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Particle in
1D HO
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Hamiltonian Matrix
in Oblique Basis
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1D HO
states

 1D Box
states



E ac = =
1
2

19 742 2ω .

Levels above ~10 (below ~ 4)
coincide with the levels of
particle in 1D Box (HO).

First 8 levels converge to
exact results (~0.01%) at
d~4+10=14 oblique basis.

(18 standard basis)

Spectral Structure
1D Box + 1D HO
(m=1, a=π/2, ω=4)



The Challenge in Nuclei...

Nuclei display unique characteristics:

• Single-particle Features
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Nuclear Shell-Model Hamiltonian
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where and are fermion creation and annihilation operators,

and are real and 

 Spherical shell-model basis states are eigenstates of the one-body
part of the Hamiltonian - single-particle states.

 The two-body part of the Hamiltonian H is dominated by the
quadrupole-quadrupole interaction Q·Q ~  C2 of SU(3).

 SU(3) basis states - collective states - are eigenstates of H for
degenerate single particle energies εεεε and a pure Q·Q interaction.



Eigenvalue Problem in an Oblique Basis
♦Spherical basis states ei         ♦SU(3) basis states Eαααα

 

♦ Overlap matrix g
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♦ The eigenvalue problem



Current Evaluation Steps

Matrix elements
( H and g )

εεεεi
  and  <j1j2J'T'|V|j3j4J''T''>

m-scheme

SM basis
(spherical)

SU(3) basis
(cylindrical)

H and g
g=UUT (Cholesky)

(U-1)THU-1 (UΨΨΨΨ)=E (UΨΨΨΨ)

Eigenstates (Lanczos)

Expectation values and
matrix elements of
various operators

<O> and <E1| O |E2>

O
 and g

|E>



We use the Wildenthal USD interaction and denote the spherical basis by
SM(#) where # is the number of nucleons outside the  d5/2 shell, the SU(3) basis
consists of the leading irrep (8,4) and the next to the leading irrep, (9,2).

Example of an Oblique Basis Calculation:  24Mg

Visualizing the SU(3) space
with respect to the SM space
using the naturally induced
basis in the SU(3) space.

SM(4) & SU3+

SU(3) basis space

SM spaceSM space

SU(3) basis space

SM(2) & SU3+

10064.179.921.570.101.750.450.08%

285031829028294492950012823Dimension
(m-scheme)

FullSM(4)SM(2)SM(1)SM(0)GT100SU3+

(8,4) &  (9,2)

SU3

(8,4)

Model Space



Number of Basis States
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Convergence of 24Mg Ground State
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24Mg - Level Structure



-95

-90

-85

-80

-75

-70
E

n
er

g
y 

(M
eV

)

SM(0)
(8,4)

SM(1)
(8,4)

SM(0)
(8,4)
(9,2)

SM(1)
(8,4)
(9,2)

SM(2)
(8,4)

SM(4)
(8,4)

SM(4)

SM(4)
(8,4)
(9,2)

FULL

SM(2)
(8,4)
(9,2)

0

2

2
4

4
3

~10% of Space

~65% of Space

Oblique Basis Spectral Results



0

2 0

4 0

6 0

8 0

100

120

Eigenvectors

M
ai

n 
C

on
tr

ib
ut

io
n 

%

SM(2) 57.77 53.02 39.78 42.50 42.99 35.92

(8,4) 63.02 63.77 71.49 59.46 70.15 54.14

SM(2)+(8,4)&(9,2) 91.58 90.95 87.72 89.06 87.35 82.23

SM(4) 93.25 92.81 89.98 92.47 91.10 88.33

SM(4)+(8,4)&(9,2) 98.57 98.73 97.92 98.41 98.55 96.59

1 2 3 4 5 6

4 35 45 3 8 4

Overlaps with the Exact Eigenstates



Summary

Use of two different sets of states can enhance our
understanding of complex systems.

There is better dimensional convergence.

Correct level order of the low-lying states.

Significant overlap with the exact states.


